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Recent advances in high-throughput methods have provided us

with a first glimpse of the overall structure of molecular

interaction networks in biological systems. Ultimately, we expect

that such information will change how we think about biological

systems in a fundamental way. Instead of viewing the genetic

parts list of an organism as a loose collection of biochemical

activities, in the best case, we anticipate discrete networks of

function to bridge the gap between genotype and phenotype,

and to do so in a more profound way than the current qualitative

classification of linked reactions into familiar pathways, such as

glycolysis and the MAPK signal transduction cascades. At the

present time, however, we are still far from a complete answer to

the most basic question: what can we learn about biology by

studying networks? Promising steps in this direction have come

from such diverse approaches as mathematical analysis of

global network structure, partitioning networks into functionally

related modules and motifs, and even de novo design of

networks. A complete picture will probably require integrating

the data obtained from all of these approaches with modeling

efforts at many different levels of detail.
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Abbreviations
ChIP chromatin immunoprecipitation

FRET fluorescence resonance energy transfer

MS mass spectrometry

PDB Protein Data Bank

Introduction
Biological interactions at many different levels of detail,

from the atomic interactions in a folded protein structure to

the relationship of organisms in a population or ecosystem,

can be modeled as networks. We focus on molecular

interaction networks, which we define as a set of nodes,

representing metabolites, genes or gene products, and a set

of directed or undirected edges, representing the interac-

tions between them (either direct physical interactions or

functional associations). In particular, three nondisjoint

molecular interaction networks have been the focus of

most recent theoretical studies: the protein–protein inter-

action network; the transcriptional regulatory network; and

small-molecule metabolism. Interaction trapping, FRET

and MS methods make the determination of protein–

protein interactions perhaps the easiest and most direct

of the three to assay for. As a result, new data are arriving at

an unprecedented rate. On the other hand, the available

data are both incomplete and distorted by a large fraction of

false positives, as well as false negatives [1��]. As for

transcriptional regulatory networks, a comprehensive

(but still incomplete) picture is available for a small number

of organisms (Escherichia coli and Saccharomyces cerevisiae),
constructed primarily through years of genetics and bio-

chemistry rather than by high-throughput approaches.

Because the methods used to elucidate these networks

were focused, values can sometimes be placed on edges

indicating whether and to what extent the link represses or

activates transcription. A good deal of biochemistry is often

elided from these networks, however, such as how the

activities of transcription factors are controlled by post-

translational modification, complexation and degradation.

Metabolic networks, again deduced through countless

person-hours of studying individual enzymes, are perhaps

the most complete of the three, but the complexity of these

networks is greatly increased by the presence of ubiquitous

feedback loops between enzymes and metabolites, which

makes direct stoichiometric analysis more difficult. Such

feedback loops play a role in increasing the complexity of

protein–protein and protein–DNA interaction networks as

well, demonstrating what is turning out to be a recurring

theme in biological modeling: the more we know, the more

complex it is — even as some overarching principles

become clearer.

New experimental techniques expedite
network elucidation
High-throughput genome sequencing projects have made

available nearly complete genetic parts lists for almost 100

organisms; however, they don’t tell us (directly anyway)

which metabolites and micrometabolites are present,

which molecular structures/organelles are likely to form,

the possible binding states of DNA regulatory regions, or

all the possible splicing variants and post-translational

modifications of proteins. Moreover, relationships between

these components must be identified biochemically. Pro-

gress toward this goal has come in the form of high-

throughput approaches to identifying the connections

within the protein–protein and protein–DNA interaction

networks. In this section, we briefly review some of these

experimental approaches, the data from which are used in

many of the theoretical studies discussed later.
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Four independent studies provided the first glimpse of

the global protein–protein interaction network in S. cer-
evisiae [2,3,4�,5�]. The first two utilized yeast two-hybrid

technology, in which a bait protein fused to a DNA-

binding domain is used to attract a prey protein fused

to a transcriptional activation domain, resulting in expres-

sion of a reporter gene [2,3]. Because output of a reporter

gene is measured instead of direct binding, transient

associations can be detected. However, yeast two-hybrid

screens are particularly ill suited to identifying multi-

protein complexes, especially when binding is highly

cooperative. The second two studies used MS-based

screens designed to detect such protein complexes

[4�,5�]. In the MS-based assays, bait proteins are tagged

and potential complexes are purified from cellular lysate

using affinity chromatography. Individual components

are then isolated by SDS-PAGE and identified by MS.

A surprising result from all four of these studies is that

there is less overlap between the methods than perhaps

anticipated and far from complete coverage of previously

documented protein interactions, suggesting that our

knowledge of the protein–protein interaction network

in yeast is not yet saturated. To address these issues,

Bork and colleagues [1��] compared these different high-

throughput methods with several other sources of inter-

action data: correlated mRNA expression; in silico meth-

ods based on co-occurrence of related genes in operons,

gene fusions and phylogenetic profiles [6–10]; and

genetic interaction data (systematic genetic analysis,

discussed below) [11]. They noted that, even for filtered

yeast two-hybrid data, a technique achieving reasonable

specificity in their test, probably about 50% of the pre-

dicted interactions are false positives. To improve the

accuracy of predictions from these sources, they exam-

ined interactions predicted by more than one technique

and found that a higher degree of accuracy comes at the

expense of coverage; only about 3% (2400) of the 80 000

predicted interactions are predicted by more than one

method. The same study estimates at least 30 000 total

interactions in yeast.

Although the yeast two-hybrid and MS studies provide

the largest currently available protein–protein interaction

data sets (apart from literature-culled databases such as

MIPS [12], YPD [13], BIND [14] and DIP [15]), two

emerging technologies promise large complementary

data sets, each with specific advantages over those pre-

viously discussed. The first new technology, proteome

chips, reported preliminary results identifying new cal-

modulin-binding proteins, as well as proteins that interact

with various phospholipids [16]. In this protein array

technology, tagged proteins are immobilized on a chip

and can then be probed for binding activity or, poten-

tially, for any other biochemical activity of interest. The

second method, called systematic genetic analysis (SGA),

involves crossing two comprehensive libraries of non-

lethal single-gene knockout strains of S. cerevisiae and

identifying double-gene knockout strains that display a

‘synthetic lethal’ or no-growth phenotype [11]. Although

the initial study considered only eight query genes, a

network of over 200 genes was uncovered, many of which

had previously unknown function. Because the yeast

deletion strains used in this study were constructed by

replacing the deleted genes with molecular ‘bar codes’, it

may be feasible to study every possible double mutant

using high-throughput parallel growth assays. The syn-

thetic lethal phenotype described here is strong evidence

of a physiologically relevant interaction between the two

genes, but the trade-off is that the mode of interaction

(simple binding or more indirect functional interaction)

cannot be determined without further experimentation.

Whereas the techniques mentioned above primarily

probe the protein–protein interaction network, the pro-

tein–DNA interaction network has been the subject of

large-scale investigation using chromatin immunopreci-

pitation (ChIP) chips. In a groundbreaking study by

Young and co-workers [17��], ChIP chips were used to

identify likely binding sites for most of the known tran-

scriptional regulators in yeast. By constructing strains in

which specific regulatory proteins were tagged with an

epitope for screening in chromatin immunoprecipitation

assays, they recovered promoter sites bound to each of the

106 regulators after growth in rich media. These sites

were then identified using DNA microarrays constructed

from noncoding regions of the yeast genome. In addition

to providing an outline of global transcriptional regulation

in yeast, the results from Young and co-workers present a

quantitative estimate of the amount of combinatorial

regulation in yeast, a comprehensive set of DNA regula-

tory motifs and new insights into several well-studied

biological processes. Of course, there are still gaps in our

understanding of this network (presumably to be filled by

more traditional genetic studies), for example, to what

extent do the protein–DNA interactions activate or

repress transcription, and under what conditions?

Biological networks are similar in structure
to other complex networks
The experimental techniques discussed above lead to

collections of ‘interactions’ between various biomole-

cules. These interactions have few, if any, quantitative

labels on them, a high error rate and, in most cases, little

cellular context. They do, however, provide an overview

of the global structure or topology of these important

cellular networks. Studies of complex networks as diverse

as the World Wide Web and the scientific co-authorship

network have uncovered unexpected nonrandom global

organizational patterns. More recently, similar topological

features have been reported for biological networks,

specifically metabolism. Metabolic networks, at least

for several model organisms, represent the most complete

picture available of any molecular network and therefore

are an ideal subject for the study of large-scale network
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properties. In the studies described below, however, they

are rarely represented in their full form, which requires a

detailed account of the stoichiometry of reactions and

feedback between enzymes and metabolites. In these

networks, nodes represent metabolites, and the edges

between nodes are directed and represent enzymatic

reactions that utilize one of the nodes as a substrate

and produce the other as a product. Empirical studies

of metabolism in 43 organisms (not completely indepen-

dent, as most of these networks were deduced by

sequence comparison to E. coli and yeast, and are highly

conserved evolutionarily) by Barabasi and co-workers

[18–20] reveal that the metabolic networks in these

organisms have several features in common with other

nonrandom networks: metabolic networks are scale free;

metabolism is a small-world network of fixed diameter;

and metabolic networks are modular. Each of these

findings is discussed below and some example networks

are shown in Figure 1.

In the terminology of critical phenomena, scale free

describes a system at the point of phase transition,

whereby correlation functions of the order parameter

have the form of a power law. In the context of scale-

free metabolic networks, the probability of finding a node

with k edges can be approximated by PðkÞ / k�a, com-

pared to the Poisson distribution expected for a random

network. Essentially, this means that there are a small but

finite number of highly connected nodes in the system. It

has been pointed out that the occurrence of many geno-

mic components follows a power-law distribution, includ-

ing protein families, superfamilies, folds, short DNA

words and even pseudogene families [21]. A surprisingly

simple model of network growth proposed by Rzhetsky

and Gomez [22] is sufficient to explain the abundance of

this type of distribution in biological systems and is

discussed in the following section.

In small-world networks, any two nodes can be connected

through a much shorter path than would be expected in a

random network of similar size and number of connec-

tions. Popular examples of small-world networks include

the network of actors co-starring in films, the majority of

whom can be connected to Kevin Bacon in fewer than

four steps, and the mathematical co-authorship network

centered around Paul Erdös. Such networks are charac-

terized by their diameter, defined as either the maximum

or average number of edges separating any two nodes.

Metabolic networks were found to be small-world net-

works and, additionally, the network diameter does not

appear to vary between different organisms.

Modularity in complex networks such as metabolism is

somewhat more difficult to define precisely. Concep-

tually, modules refer to groups of genes that perform a

discrete function separable from the rest of the system

[23]. In a recent paper, Barabasi and co-workers [20]

Figure 1
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Metabolism is a scale-free network. Central metabolism in E. coli is
represented as an undirected graph for simplicity. Nodes represent

metabolites, and two nodes are connected by an edge if there is a

reaction in which one is consumed as a substrate and the other

yielded as a product. Stoichiometry data for E. coli metabolism

were obtained from the web site of B Palsson, University of

California, San Diego (http://gcrg.ucsd.edu/). (a) Central metabolism

is shown as an undirected graph (open circles); the most highly

connected nodes (ADP, ATP, CO2, coenzyme A [COA], NADH,

phosphate (inorganic; PI), pyruvate [PYR]) are labeled. Randomly

connected (red circles) and scale-free (blue circles) networks of

similar size and number of connections are shown for comparison.

The number of edges connected to each node is indicated by the

node size (larger means more edges). (b) The fraction of nodes with

a given number of edges is shown for three types of networks:

randomly connected networks, scale-free networks and the

metabolic network shown in (a). The frequencies for random and

scale-free networks are computed by averaging over an ensemble

of 500 networks of similar size and topology. Both the scale-free
and metabolic networks have a small, but finite number of nodes

with over ten edges, whereas the randomly connected graphs have

almost none.
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address the apparent paradox that metabolic networks

appear to have characteristics of both modular networks

(in which each node should have about the same number

of links) and scale-free networks (in which most pathways

are linked through a few highly connected ‘hubs’). Using

the clustering coefficient, defined as Ci ¼ 2ni=kiðki � 1Þ,
where ni is the number of links between the ki nearest

neighbors of node i, as a measure of modularity, they find

that metabolic networks in all organisms examined are

modular in addition to being scale free. To resolve the

paradox, they define a new class of networks called

‘hierarchical networks’, which possess both scale-free

and modular properties, and provide a simple algorithm

for generating such networks that may resemble the way

networks are constructed during the evolutionary process.

Such empirical findings are intriguing because they pro-

vide hope that there are common design principles shared

between biological systems and engineered systems, in

the latter of which network topology is intended to

provide special properties, such as robustness or quick

communication between nodes. However, several key

differences between some living and nonliving networks

suggest that caution should be taken when making gen-

eralizations between these distinct classes of systems.

First, purely topological studies neglect the identity of

each node. In some networks, such as the Internet, all of

the nodes perform the same function (i.e. to route IP

packets), but, in metabolic networks, each node repre-

sents a distinct chemical species. Whereas the Internet

might function similarly if individual nodes were rewired

while keeping the same overall topology, metabolic reac-

tions are highly specific and edges cannot, in general, be

swapped because of additional constraints such as con-

servation of mass (in fact, a more realistic model of the

Internet that takes account of differences in router con-

nectivity and speed suggests that similar constraints may

apply). Doyle has proposed that such networks are not

actually free of a characteristic scale, but are composed of

many nodes of different types organized into modular and

hierarchical structures, and has suggested the term ‘scale

rich’ to describe them (J Doyle, personal communication).

From a biochemical perspective, the connectivity of the

most highly linked nodes, water and ADP/ATP, can be

understood in terms of the large number of hydrolysis and

energy-utilizing reactions, and the convenience of having

a common energy carrier and biosynthetic building block,

and may have little to do with the benefits endowed on

the cell by maintaining a specifically scale-free network

topology. Second, the concept of small-world networks

tends to overlook the stoichiometry inherent to biochem-

ical reactions. Watts and Strogatz [24] demonstrated that a

relatively small number of randomly connected edges can

reduce a mostly linear, large-world network to one with

small-world properties. In metabolic networks, these

path-length-reducing edges can come in the form of

cofactors that connect seemingly unrelated reactions.

For example, we can reduce the glycolytic pathway dis-

tance from glucose to pyruvate to two steps by allowing

links through cofactors such as ADP, although at least

nine distinct enzymes are needed to produce pyruvate

from glucose. Although we expect such studies will

ultimately reveal deep connections between evolved

and engineered networks, taken together, these differ-

ences advise against overgeneralizing between these two

distinct classes of networks.

Biology from a network perspective

There are different philosophies as to how network

information can be used to increase our understanding

of biological systems. In the above studies, network

topology data were used to generate new hypotheses

about how systems are organized. A complementary

approach involves taking existing hypotheses and using

the extensive network data to either support or reject

them. The second approach, reformulation of old ques-

tions from a network perspective, is the focus of this

section and the next. In particular, the relationship

between the evolution of genes and the networks they

constitute has long been the subject of speculation by

theorists. With the availability of large-scale quantitative

data on the structure of molecular networks, it is possible

to pose specific questions about the role of network

structure in the evolutionary process and the role of

evolution in shaping network structure. Several recent

studies highlight the power of this new approach to

understanding biology.

Rzhetsky and Gomez [22] examined the scale-free

(power-law) distribution of protein domain types by con-

structing a simple, biologically plausible model of network

evolution that reproduces this distribution. In their model,

each gene (or gene product) can have an upstream or

downstream domain or both, and upstream domains inter-

act directly with downstream domains of the same class.

Domains of existing classes grow by duplication, whereas

innovation of new domain classes occurs at a constant rate.

Their simple model successfully reproduces the scale-free

distribution of domain types observed in the genome

sequences of E. coli and yeast. Parameterizing their model

with data from these two organisms allowed them to

address an outstanding question in genomics: what is

the total number of distinct domains in an organism’s

genome? Based on their model, they estimate at least

4600 domains for E. coli and over 12 900 domains for yeast.

Combining complete genome sequence data with an

outline of protein interaction networks, it is possible to

examine the effect of network structure on the rate of

protein evolution. Feldman and co-workers [25] exam-

ined the rates of evolution of a large set of genes shared by

two evolutionarily distant eukaryotes (S. cerevisiae and

C. elegans) by constructing sequence alignments and

comparing the average number of substitutions per site
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for each gene with that of its interacting partners. They

found that proteins that interact (as predicted by yeast

two-hybrid and MS methods) tend to evolve at similar

rates. After evaluating several alternative hypotheses,

they conclude that interacting proteins evolve at similar

rates as a result of co-evolution, providing the first quan-

titative picture of the overall rate and frequency of this

important evolutionary process. In addition, they found

only a weak correlation between the number of interac-

tions made by a protein and its rate of mutation. This

weak correlation may reflect a deficiency in the accuracy

of the interaction data or suggest that other factors play a

role in determining the rate of evolution.

A role for structure?

To what extent can structural information help clarify the

role of individual nodes and the relationships between

them in these networks? A recent study by Park et al. [26]

used protein structure information to add value to nodes

in the protein–protein interaction network. After taking a

census of interactions between protein domains in the

PDB, they conclude that most domain families interact

with only a few other families, whereas a small number

interact less specifically. Based on their findings, it may be

possible to predict likely interaction targets for proteins of

known structure, add confidence to predictions from

other methods or even to predict structural assignments

for proteins that interact with partners of known structure.

Edwards et al. [27] used data from solved protein com-

plexes to estimate the accuracy and even improve the

quality of predictions of protein–protein interactions

obtained via high-throughput techniques.

Studies focused on small-molecule metabolism demon-

strate how structural information can be used to directly

test hypotheses concerning the origin of metabolic path-

ways. Initial studies have focused primarily on the struc-

tural composition of metabolic pathways [28,29]. Because

evolution of conserved metabolic pathways presumably

occurred very early in the history of life, structural infor-

mation is important because sequence similarity may

be difficult to detect. These studies set the stage for

more recent work that aims to use network informa-

tion together with sequence and structural homology

to select between two leading models of pathway evolu-

tion [30,31].

Modules and motifs
That biological systems are modular is not a new idea. In

fact, examples of modularity in biological systems were

recognized at least as early as the cell theory proposed

over 150 years ago by Schleiden and Schwann. Examples

of biological systems with modular components include

the organization of the bacterial gene regulatory network

into operons, and the modular organization evident dur-

ing plant and animal development. We have thus come to

expect a similar modular organization at the molecular

level and many individual examples of such modules (by

some definition) have already been documented.

In the past, sequence homology allowed us to deduce the

molecular functions of a gene based on its inclusion in a

larger protein family. Recent research has been directed

at understanding the systems-level function of a gene by

identifying the module or modules to which it belongs.

An obstacle to elucidating the modular structure of mole-

cular networks is the lack of a precise definition of what

constitutes a module in this context. The clustering

coefficient described above presents a mathematically

precise definition of modularity in metabolic networks,

but it is unclear how this definition helps a biochemist to

understand the function of these networks. By contrast,

Hartwell et al. [23] present a biologically relevant defini-

tion of modules as discrete units of function separable

from the rest of the system, but this definition lacks the

precision to unambiguously partition a network of genes

into modules. As a result, the studies below each use a

slightly different operational definition of modularity,

although all are based on the co-regulation of gene

expression within modules.

Identifying modules

Systematic high-throughput data acquisition provides an

opportunity to unravel gene regulation networks in

eukarya, and in bacteria and archaea. In yeast, functional

relationships can be inferred from the numerous available

collections of gene expression data. In bacteria and

archaea, the conservation of co-regulated genes in oper-

ons, together with the large number of complete genome

sequences, provides a similar opportunity to infer func-

tional relationships, provided orthologous genes can be

identified across several species.

Barkai and co-workers [32�] tackle the problem of iden-

tifying co-regulated genes in yeast, in which combinator-

ial regulation can make expression patterns cryptic. At the

heart of their ‘signature’ approach is a two-step procedure.

First, a set of input genes that are known to participate in

the same process (or, in some cases, are chosen randomly)

is selected. Then, a set of experiments is chosen over

which the expression patterns of the input genes are

significantly correlated. This step is critical, because

genes sharing only a subset of regulatory motifs in com-

mon may not have significantly correlated expression

patterns when all experimental conditions are considered.

Next, a set of genes is chosen whose expression is sig-

nificantly correlated considering only those experiments

selected in the previous step. As a result, genes under

complex combinatorial control can be identified as part of

the same transcriptional module, even though they may

show little correlation in expression over all experimental

conditions. This method was applied to a comprehensive

set of gene clusters obtained by grouping together genes

with shared DNA motifs in their 50 upstream regions. In
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this way, every possible six, seven or eight base pair DNA

sequence was considered as a possible regulatory motif,

resulting in the identification of 86 transcriptional mod-

ules comprising over 2200 genes.

A complementary approach to unraveling combinatorial

gene regulation was taken by Pilpel et al. [33]. In their

computational study, Pilpel et al. first identified a set of

356 DNA motifs believed to represent transcription factor

binding sites, using both known sites and sites obtained

after applying the motif-finding Gibbs sampler AlignACE

[34] to genes in related functional categories. They found

that genes sharing a single regulatory motif in their

promoter region showed little correlation in expression

patterns, confirming results from other studies, but when

they considered genes sharing the exact same subset of

regulatory motifs, they found significant correlation in

expression patterns. As most of their DNA motifs (92%)

were identified using computational methods on partially

annotated genomic sequence information, their method

should be applicable to any organism with a complete

genome sequence and a large collection of gene expres-

sion data, such as human.

In contrast to the large amount of gene expression data

currently available for yeast, there are only about 50

different whole genome microarray data sets available

for all bacterial species (although this number is increas-

ing rapidly). Nonetheless, the large number of genome

sequences completed or currently in the pipeline pro-

vides an equally exciting opportunity to unravel bacterial

and archaeal regulatory networks. In particular, two

approaches are beginning to show considerable progress:

using conservation of gene order in operons across unre-

lated genomes to infer co-regulation and phylogenetic

footprinting of cis-regulatory motifs upstream of several

orthologous transcriptional units.

Snel et al. [35�] used genomic data to identify transcrip-

tional modules, or regulons (defined as the set of genes

regulated by a common transcription factor), by grouping

together genes whose orthologs occur within the same

operon in several unrelated species. Several recent

advances in operon prediction [36–40], as well as the

large number of sequenced microbial genomes, promise

to further improve methods that take advantage of

operon-based gene order conservation. As more genome

sequences become available, however, (sometimes spur-

ious) interactions between modules tend to interconnect

many functionally unrelated pathways. Their solution is

to identify and remove connections from several ‘linker’

proteins, which tend to connect otherwise distinct sub-

networks. Using this graph-based heuristic, they recov-

ered a set of nearly 800 functionally homogenous

modules, including many proteins of previously unknown

function. Although this study and the study by Barkai and

co-workers [32�] focused on different organisms, the large

discrepancy between the numbers of modules identified

(86 modules in 2200 genes versus 800 modules in 3000

genes) underscores the lack of a universally accepted

operational definition of modularity.

Another approach to parsing bacterial and archaeal tran-

scriptional regulatory networks into discrete modules is

the use of phylogenetic footprinting [41–44]. In a foot-

printing study, several related genomes are compared by

aligning the upstream regions of orthologous genes.

Assuming that orthologous genes are under similar tran-

scriptional control in related species (not always true), the

most highly conserved sequences should represent func-

tionally important DNA motifs, such as transcription

factor binding sites. Preliminary studies have focused

on proteobacterial species, but the refinement of algo-

rithms and the many more related families of bacteria in

the genome sequencing pipeline (such as cyanobacteria

and lactic acid bacteria) make this one of the most

exciting research areas in microbial genomics.

Motifs

In the previous section, we presented a loose definition of

modules as discrete units of function separable from the

whole. Here, we define motifs as a set of genes or gene

products with specific molecular functions arranged

together such that they perform some ‘useful’ behavior.

In contrast to modules, the behaviors of motifs are not, in

general, separable from the rest of the system and they

generally constitute only part of a recognizable systems-

level function (such as a feedback loop or a logical

operation). From an engineering perspective, it is satisfy-

ing to think that modules of genes, such as those being

elucidated by methods already described, comprise com-

mon motifs arranged in new ways to produce different

phenotypes. Even more satisfying would be a set of

design principles common both to circuits of human

design and to those that result from evolution. In two

separate computational studies, Alon and co-workers

[45,46�] make the claim that, in fact, both of these

statements are true. In their initial study, they explore

the network of transcriptional regulation in E. coli by

searching RegulonDB (a database of E. coli operons,

transcriptional regulators and promoters [47]) for three

types of motifs: feed-forward loops, in which a transcrip-

tion factor and its downstream target both regulate a third

target; single-input modules, in which a group of operons

is controlled by a single transcription factor; and dense

overlapping regulons, in which the target operons for a

group of transcription factors are highly overlapping.

These three motifs were found to occur more frequently

in the E. coli transcriptional network than in random

networks, supporting the idea that they represent basic

building blocks of transcriptional circuits. In a more

recent study, Alon and co-workers found a set of over-

represented motifs shared between both biological cir-

cuits and circuits of human design by enumerating all
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three- and four-node subnetworks of several biological

and technological systems, including transcriptional reg-

ulation networks, food webs, neuronal connections in C.
elegans, electronic circuits and a subset of the World Wide

Web. By studying these vastly different types of net-

works, they were able to make generalizations about the

types of motifs suited to different networks, and found

distinct differences between networks whose primary

function is to carry out energy flow and those that perform

information processing.

Interactions between different networks can
complicate analysis
Although much initial progress has been made toward

understanding individual networks, such as protein–

DNA interactions and metabolism, much work remains

to be done before we have a clear picture of how informa-

tion is passed between these different types of networks.

The importance of drawing these connections can be

demonstrated by considering some specific examples

from the exhaustive search for circuit motifs discussed

in the previous section. Surprisingly, Alon and co-workers

found no negative-feedback loops (ignoring autoinhibi-

tory regulators) in the transcriptional network of E. coli,
whereas a similar study from the same group found that

both three- and four-node feedback loops are highly over-

represented in electronic circuits. This raises the ques-

tion: do biological systems use negative feedback? The

answer is certainly yes, even the E. coli transcriptional

network. One clear example of negative feedback is the

regulation of the Trp operon, in which the metabolic end

product, tryptophan, represses transcription of the Trp

enzymes by binding directly to the Trp repressor [48].

Consider also the Ara operon, cited by Alon and co-

workers as an example of a feed-forward loop. Because

CAP regulates AraC, binding upstream near the AraC

promoter, and both AraC and CAP bind upstream of the

AraBAD operon, this system seems to be a clear example

of the feed-forward motif described in their recent study.

However, this simple model is only strictly correct in the

limit where cAMP and arabinose concentrations are high.

When interactions between proteins and metabolites are

taken into account, the picture becomes somewhat more

complex. In the absence of arabinose, AraC represses

transcription of AraBAD through a DNA-looping

mechanism, whereas in the presence of arabinose, AraC

activates transcription of AraBAD, but negatively regu-

lates its own transcription [49]. As a result, the behavior of

this circuit in vivo may be qualitatively different from its

apparent behavior from a purely protein/DNA-centric

point of view.

Initial efforts to tie these distinct types of data together

are already underway. Several recent examples include

the use of yeast two-hybrid and protein–DNA interaction

data to better understand gene expression patterns

[50–53], and the use of protein–protein interaction data

together with gene expression data to uncover signal

transduction pathways [54].

Engineering networks
A critical test of our understanding of gene networks is the

de novo design of genetic circuits with novel behavior.

Recent attempts to design novel circuits from existing

genetic parts have received enormous interest because

they represent proof of principle that the de novo design of

useful motifs, which could ultimately be used as compo-

nents in larger synthetic networks, is within our grasp

[55-62,63��]. Of particular interest is a recent study by

Guet et al. [63��] that employed combinatorial libraries to

sample the topology/parameter space available to a sim-

ple three-node regulatory network containing LacI, TetR

and lambda cI, together with five promoters of varying

strengths and specificities regulated by these proteins.

From these simple components, numerous networks

were identified that performed computational functions

on the input signals (presence or absence of anhydrote-

tracycline and IPTG), such as NAND, NOR and NOT

IF. These and other related studies have brought to light

several important design considerations for genetic net-

works. First, network topology alone is not sufficient to

determine network behavior. In the study by Guet et al.,
pairs of networks were found that have the same topology

but different logical behaviors, as well as pairs of networks

with different topologies but the same logical behavior.

Second, the noise inherent to genetic systems requires

that reliable circuits produce behavior that is robust to

fluctuations in both the choice of parameters and the

initial state of the system. As a result, biological networks

such as the Drosophila segment polarity module have

been shown to display a robustness to both the exact

parameter values and the initial state of the system that is

almost unheard of in networks of human design [64].

Notably, nearly all of the above studies combined analy-

tical or numerical simulation of networks with experi-

mental validation, evidence that our concept of how to

study complex biological systems is shifting from brute-

force genetics toward an engineering approach.

Although we are far from constructing synthetic networks

as complex as those seen in nature, Ideker et al. [52]

developed a systematic engineering-based approach to

studying complex regulatory networks that met with

considerable success. Underlying their approach is a cycle

of model building, systematic experimental perturbation

and model refinement. Their recent study represents a

first pass through this cycle applied to the well-studied

yeast GAL (galactose utilization) network. After con-

structing a model that reflects our current understanding

of the regulation of galactose utilization (obtained from

the literature), they systematically constructed knockout

strains for nine genes in the regulation of the GAL

pathway. Next, they identified yeast genes responding
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to these perturbations using DNA microarrays and iso-

tope-coded affinity tag (ICAT) tandem MS. For genes

that responded to these perturbations, they found specific

connections at the protein interaction level (by searching

databases of published protein–protein and protein–DNA

interactions), as well as at the genomic level (by identify-

ing cis-regulatory sequences upstream of these genes),

that might explain their observed behavior. Finally, they

revisited the original model with several observations that

suggest specific refinements, such as a role for the meta-

bolite galactose-1-phosphate in galactose regulation.

Conclusions
When we first entered the era of high-throughput biology

several years ago, there was considerable debate in the

editorial columns of numerous journals over what role

hypotheses would play in this new biology [65–67]. A

particularly contentious point was whether data collection

should be driven by the desire to test specific hypotheses

or whether it is better to collect as broad a sample as

possible. On the one hand, technological advances pro-

mised a comprehensive biological data set faster and

cheaper than could be obtained through a less systematic,

hypothesis-driven effort. The strongest technology advo-

cates even suggested that, to discover unexpected pat-

terns, we must approach data collection free of the bias of

hypotheses. On the other hand, critics of this approach

questioned the accuracy of data that were collected with-

out the kinds of well-reasoned controls that accompany a

more focused research plan, as well as the premise that

data-mining alone can produce understanding.

In this review, we have tried to build the case that the era

of high-throughput biology is well underway and that we

are entering what has been called the ‘era of pattern

detection’ [66]. At this point, it is useful to step back

and consider to what extent the arguments for and against

hypothesis-free data collection have held true. First, there

is no question that high-throughput techniques have

produced data faster and cheaper even than originally

anticipated. Moreover, these data have profoundly chan-

ged our perception of biology and given rise to entirely

new fields of study, such as comparative genomics, that

would not have been possible otherwise. At the same

time, however, our ability to turn systems-level data into

systems-level understanding has been limited.

Throughout our review of theoretical approaches to

understanding systems-level networks, we have cited

complicating factors that can limit their scope or rele-

vance. We have also endeavored to point out that the

limitations of current theoretical modeling efforts stem

not from a lack of sufficiently clever approaches, but

rather from the difficulties of modeling complex biologi-

cal systems. In our own modeling experience, directed

at understanding protein folding and the lysis/lyogeny

decision in lambda phage, we have found that ‘simple’

models, which incorporate data from numerous different

experimental approaches, often take tens of thousands of

lines of computer code to state precisely. Understanding

the systems-level behavior of entire cellular networks

will probably be much more complicated. Difficulties

arise from interactions between many different cellular

subnetworks, ubiquitous feedback loops and the fact that

network behavior depends not only on its topology,

which can be deduced from high-throughput interaction

assays, but also on the details of specific kinetic para-

meters, which generally require directed biochemical

studies to obtain.

So, to what extent do our current limitations stem from the

trade-off between the breadth of data available from high-

throughput methods and the depth of knowledge that

more traditional approaches provide? As an example, con-

sider again the regulation of the arabinose operon. Given

perfect (error-free) data, including the key proteins

involved and all protein–protein, protein–DNA and pro-

tein–metabolite interactions, we might be able to form a

rough sketch of how the basic regulation of this operon

works. However, it is unlikely that we would be able to

build an accurate model of the dynamical behavior of this

simple system without further mechanistic information.

Moreover, the early acceptance of such a simplified model

may have precluded the years of genetics, biochemistry

and structural biology that produced such profound

insights as the discovery of DNA looping, which helped

to explain the mechanism of eukaryotic enhancers, and the

role of arm–domain interactions in protein function [49].

What, then, is the role of theoretical modeling efforts in

relation to the -omic scale data sets being generated? At

present, there is already a wealth of data deposited in

public databases that might yield insight into currently

unresolved biological problems. Although efforts to

model the systems-level ‘behavior’ of cellular interaction

networks based solely on these data may not even be

feasible, we certainly expect more from our investment

than just individual facts deposited in a database. New

algorithmic approaches to parsing networks into modules

and motifs represent exciting first steps toward adding

more value and biological relevance to these data.

Furthermore, engineering-based approaches, including

the de novo design of simple networks, coupled with

modeling bring us closer to the ultimate goal of building

realistic large-scale models of biological systems.

At the beginning of this review, we presented the ques-

tion: what can we learn about biology by studying net-

works? Though we are still a long way from a complete

answer to this important question, we can offer two partial

answers. First, network-based approaches to uncovering

patterns will help to organize this vast collection of data in

a way that makes it more accessible and valuable to

traditional biologists. Second, reformulating existing
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biological questions from a network perspective (as dis-

cussed in a previous section) has the potential to take full

advantage of the wealth of available data and answer

questions that could not be addressed otherwise.

Although these complex biological networks are proving

to be more difficult to model the more we learn about

them, we fully expect that our efforts will be rewarded

with a detailed picture of the process by which living

systems derive phenotype from genotype.
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